

Guideline for financial calculation methods

EFFECT4buildings Toolbox:
Financial calculations; Annex 2

EFFECT4buildings

The project "Effective Financing Tools for implementing Energy Efficiency in Buildings" (EFFECT4buildings) develops in collaboration with public building managers a comprehensive decision-making support toolbox with a set of financial instruments: Financial calculation tools; Bundling; Funding; Convincing decision makers; Energy Performance Contract; Multi Service Contract; Green Lease Contract; Prosumerism. The tools and instruments chosen by the project has the biggest potential to help building managers to overcome financial barriers, based on nearly 40 interviews with the target group. The project improves these tools through different real cases.

To make sure building managers invest in the best available solutions, more knowledge on different possibilities is needed as well as confirmation from colleagues that the solutions performs well. EFFECT4buildings mapped technological solutions for energy efficiency in buildings with the aim to share knowledge and experiences of energy efficiency solutions among building managers in the Baltic Sea Region.

This document includes a comprehensive guideline for financial calculation methods and example how to use them. Material provides easy presentations of several optional methods with clear numerical samples. Furthermore, the guideline can be used as an additional supporting material, when studying and sharing information regarding calculation methods for stakeholders. It can be used also individually as material for educational purposes to all possible interested parties.

VIDZEME

GATE
 21

A3 stowarzyszenie gMIN I POWIATÓW MAkOPOLSKI

Tehnopol

:":.... Riigi Kinnisvara

 ByggDialogDalarna

EFFECT4buildings project is implemented with the support from the EU funding Programme Interreg Baltic Sea Region (European Regional Development Fund) and Norwegian national funding. The aim of the project is to improve the capacity of public building managers in the Baltic Sea Region by providing them a comprehensive decision-making support toolbox with a set of financial instruments to unlock the investments and lower the risks of implementing energy efficiency measures in buildings owned by public stakeholders. More information: http://www.effect4buildings.se/

EFFECT4buildings

Financial calculation methods

Abstract

The primary purpose of the guideline is to assist building managers and other relevant stakeholders, who are operating with energy savings investments to understand the functionality of different financial calculation methods. This guideline deals with calculation methods of payback period, cash flow, net present value and internal rate of return.

The net present value and the internal rate of return give a better picture of profitability of energy saving investment comparing to the direct payback period.

Payback period

Direct Payback period is a good and simple measure to evaluate energy efficiency investment profitability. However, it does not take in the account e.g. energy price or value of money, and it does not take in to account future profits. The method does not really show the profitability of the investment.

Payback period can be calculated by dividing the Investment with yearly (net)profits. In case of EE investment, the investment shall be divided by yearly energy savings

More detailed study of following examples:

1) Heat recovery unit

- 30000 eur initial investment gives yearly energy savings of 3000 eur
- Payback period is $30000 / 3000=10$ years

2) Geothermal heat pump

- 55000 eur initial investment gives yearly energy savings of 5000 eur
- Payback period is $55000 / 5000=11$ years

EFFECT4buildings

Cash flow analysis

Cash flow estimation is the most difficult part of financial analysis. Investment costs are relatively easy to estimate, but instead of that energy savings and operation and maintenance costs are based on more extensive variables.

- As simplify Cash flow is the sum of costs and profits for each time period: In case of EE investment:

Costs are sum of investment cost and other costs
Profits are yearly energy savings

- can be also discounted with given discount rate.

EFFECT4buildings

Discount rate and discount factor

Discount rates are used to discount future cash flows back to the present.

Discount rates are a crucial factor in energy efficiency measures impact assessments.
Energy efficiency measures (e.g. in buildings) typically have relatively high upfront costs, which need to be recovered by savings over longer periods. Discount rates are thus used to attribute a value to future cash flows. The higher the discount rate, the lower the value we assign to future savings in today's decisions. Consequently, high discount rates make energy efficiency measures look less attractive.

Let's consider following example:

- We always prefer getting money today over getting it later in the future
- If we have a choise to get 100 eur now, or $100+x$ eur next year, the rate $100 /(100+x)$ is called discount factor
- Let's assume discount rate of 5%. Following table shows present value of 100 eur cash flow in a 20 years timeline.

EFFECT4buildings

discount factor
discounted cash
flow

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0,95	0,91	0,86	0,82	0,78	0,75	0,71	0,68	0,64	0,61	0,58	0,56	0,53	0,51	0,48	0,46	0,44	0,42	0,40
100	95,24	90,70	86,38	82,27	78,35	74,62	71,07	67,68	64,46	61,39	58,47	55,68	53,03	50,51	48,10	45,81	43,63	41,55	39,57

- With 5 \% discount rate, 100 eur today is worth same as 39,57 eur in 20 years

Net present value

The sum of all discounted present and future cash flows is called net present value In terms of net present value is significantly influenced by both the investment's lenght of life cycle and discount rate and that is why them must be defined properly.

Previous two examples, Investment 1 and 2
Initial investment's of 55000 eur and 30000 eur and savings of 5000 eur and 3000 eur in a year.

Following table shows the present values of those savings in 20 years with a discount rate of 5 \%.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Investment 1	3000	2857	2721	2592	2468	2351	2239	2132	2031	1934	1842	1754	1671	1591	1515	1443	1374	1309	1247	1187
Investment 2	5000	4762	4535	4319	4114	3918	3731	3553	3384	3223	3070	2923	2784	2652	2525	2405	2291	2181	2078	1979

- Total discounted savings for the investment 1 are 39256 eur and for the investment 2 discounted savings are 65427 eur in 20 years.

Net present values are then:
Investment 1: $-30000+39256=9256$ eur
Investment 2: -55 000 + 65427 = 10427 eur

EFFECT4buildings

Internal rate of return

Internal rate of return (IRR) for an investment is the discount rate at which the net present value of the investment is zero. An investment is profitable if it has a high internal rate of return. Usually a company sets itself a criterion that requires investment projects to exceed a certain value internal rate of return.

As regards the internal rate of return, the profitability of an investment is significantly influenced by the investment review period used in the calculation, so it needs to be properly defined.

Internal rate of return is the discount rate that makes investments net present value to 0 .

Sum of the discounted cash flows (energy savings) equals the initial investment.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	sum
discount factor	1,00	0,92	0,84	0,77	0,71	0,65	0,60	0,55	0,50	0,46	0,43	0,39	0,36	0,33	0,30	0,28	0,25	0,23	0,21	0,20	
discounted cash flow	3000	2754	2529	2322	2132	1957	1797	1650	1515	1390	1277	1172	1076	988	907	833	765	702	644	592	30000

Example Investment 1

- Internal rate of return for the investment 1 is 8,9 \%
- Internal rate of return for the investment 2 is $7,4 \%$

Example investment 1

Length of life cycle

Lenght of life cycle of an investment is the time at which the investment is used and fulfills its intended purpose, and this is called technical lifetime.
The economic life of the investment can also be selected as the lenght of life cycle. There is a clear difference between the two and the period of consideration used in the calculation plays a major role in the profitability of the investment.

Length of life cycle can be:

- Technical lifetime: The period over which the investment object is usable in its intended use. The technical life can be extended or at least maintained by regular maintenance and servicing of the system or device
or
- Economical age: At what point does a new machine / building begin to be more efficient or energy efficient than the old one, and the device or system is worth replacing due to economic terms
or
- Life cycle, that is based on Experience from previous investments

EFFECT4buildings

Summary

Investment 1

- initial investment of 30000 eur
- yearly savings of 3000
- payback period of 10 years
- IRR 8,9 \%
- net present value 9256 eur

Investment 2

- initial investment of 55000 eur
- yearly savings of 5000
- payback period of 11 years
- IRR 7,4 \%
- net present value 10427 eur

Example cases:

We have picked two different cases of renovation (one successful and another unsuccessful) and with these cases we present different financial calculation methods.

Simple pay back time

Case 1:

Tampere Hall: Heat recovery adding to ventilation machines

- Energy efficiency investment : 180000€
- Decrease costs of Heating 520000 kWh/year (31200€/year)
- Price of heat energy : 0,06€/kWh
- Specific emissions of CO2 (heating) : 0,16 ($\mathrm{kgCO} 2 / \mathrm{kWh}$)
- Length of life cycle : $\mathbf{2 0}$ years
- Discount rate : $\mathbf{2}$ \%

Case 2:

Tampere Hall: Current lighting replacement for more powerful LED lighting in concert halls

- Energy efficiency investment : $\mathbf{1 7 6 0 0 0}$ €
- Decrease cost of electricity: $\mathbf{1 0 5 0 0 0 k W h} /$ year (9450 €/year)
- Price of electricity: $\mathbf{0 , 0 9} \mathbf{€} / \mathbf{k W h}$
- Specific emissions of CO2 (electricity) : 0,20 (kgCO2/kWh)
- Decrease cost of Heating: -91 000kWh/year (-5460 €/year)
- Price of heat energy: $\mathbf{0 , 0 6} € / \mathrm{kWh}$
- Specific emissions of CO2 (heating) : 0,16 (kgCO2/kWh)
- Decrease cost of Cooling: $\mathbf{2 8 0 0 0 k W h} /$ year ($840 € /$ year)
- Price of cooling energy: $\mathbf{0 , 0 3} € / \mathrm{kWh}$
- Specific emissions of CO2 (cooling) : 0,015 (kgCO2/kWh)
- Length of life cycle: $\mathbf{1 5}$ years
- Discount rate: $\mathbf{2 \%}$

Cash flow

Heat recovery adding to ventilation machines
Current lighting replacement for more powerful LED lighting in concert halls

Year

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

	-	Year	
		€	
\cdots	Cash flow 2	0.	176000
		1.	171170
(20000,00)	0123456789101112131415	2.	166340
(40000,00)		3.	161510
(60000,00)		4.	156680
(80000,00)		5.	151850
(100 000,00)		6.	147020
(120 000,00)		7.	
(140000,00)			142190
000,00)		8.	137360
(180000,00)	Year	9.	132530
(200 000,00)		10.	127700
	-Cash flow 2	11.	122870
		12.	118040
		13.	113210
		14.	108380
		15.	103550

EFFECT4buildings

Net present value

Heat recovery adding to ventilation machines

Internal rate of return

Heat recovery adding to ventilation machines

EFFECT4buildings

Training: use of Financial calculation tool

Background information:

- Tampere Hall participated in the Total Concept project to get more knowledge on which energy-efficient measures are profitable to implement at the same time as the house extension 2015.
- This calculation training is focused on presenting individual parts of Tampere Hall's energy renovation.
- We have picked two different cases of renovation (one successful and another unsuccessful).
- Basic informations

Name of building: Tampere Hall
Heating system: District heating
Cooling: District cooling
Ventilation system: Exhaust ventilation

- Energy amount before the renovation:

Heating energy demand = 3050 MWh
Electricity demand $=2050 \mathrm{MWh}$
Cooling energy demand $=290 \mathrm{MWh}$

- Renovations:

Measure 1: Adding HRU to a Small Concert Hall IV
Measure 2: Better Windows to the Expansion Part

EFFECT4buildings

District heating costs $=0.06(€ / \mathrm{kWh})$
Specific emissions of CO 2 (heating) $=0,16(\mathrm{kgCO} / \mathrm{kWh})$
Option 1. Estimation for electricity price change 2,6 (\%/year)
Option 2. Estimation for electricity price change 6,0 (\%/year)
Energy Subsidies = 0 \%
Non- energy benefits = $0 €$
Finance interest rate $=0 \%$
Discount rate= 2%

1. Adding HRU to a Small Concert Hall IV

- Change of purchased amount of heating energy $161 \mathrm{MWh} / \mathrm{a}$
- The investment $69000 €$
- Length of life cycle 20 years
- Maintenance cost $=2$ (\% of the investment cost/year)

2. Replacing the North Glass Wall with Better Windows at the Expansion Part

- Change of purchased amount of heating energy 15,4 MWh / a
- The investment $128000 €$
- Length of life cycle 30 years
- Maintenance cost $=0,5$ (\% of the investment cost/year)

EFFECT4buildings

Answers

| DECREASE ENERGY/ WATER COSTS | \| Adding HRU to a Small Concert Hall Iv|Better Windows to the Expansion Part |
| :---: | :---: |
| Decrease of heating cost(E/year) | $1{ }^{10465} 1001$ |
| Decrease of electricity cost (E/year) | 1 - ${ }^{\text {d }}$ |
| Decrease of cooling cost (E/year) | 0 |
| Total decrease of energy costs/year [E /vear) | 10465 _ 1001 |
| Decrease of water cost((E/vear) | 0 |
| Total decrease of costs during Life-cycle (€) | 209300×30030 |
| INCREASE COSTS | \|Adding HRU to a Small Concert Hall IV ${ }_{\text {Better Windows to the Expansion Part }}$ |
| Investment cost of measures - energy subsidies ($¢$) | $69000 \sim 128000$ |
| Maintenance costs/year [E/year) | 1380 |
| Increase of costs during Lite-cycle (€) | $96600 \square 147200$ |
| COSTS OF LIFE CYCLE | \| Adding HRU to a Small Concert Hall IV ${ }_{\text {Better Windows to the Expansion Part }}$ |
| Life cycle result (E) | $112700{ }^{\text {- }}$ |
| REDUCTION OF CO2-EMISSIONS | \| Adding HRU to a Small Concert Hall IV ${ }^{\text {B }}$ Better Windows to the Expansion Par |
| Reduction of CO2-emissions (kscor $/$ /vear | $25760 \square$ |
| Reduction of CO2-emissions / CO2-emissions before measures (\%) | 5\% |
| Reduction of CO2-emissions during the Life cycle (kg $\mathrm{CO}^{\text {c }}$) | $515200 \sim$ |
| FINANCIAL RESULTS | Adding HRU to a Small Concert Hall IV ${ }^{\text {Better Windows to the Expansion Part }}$ |
| Pay backtime (year) | 6,59 |
| Internal rate of return, 1RR (\%) | 11,74\% |
| Internal rate of return, IRR (\%) , Option 1. Energ//water prices change | 14,56\% |
| Internal rate of return, IRR (\%)], Option 2. Energ//water prices change | 18,14\%\% -3,41\% |
| Net Present Value, NPV (\pm) | 79553 ${ }^{\text {[119915 }}$ |
| Net Present Value, NPV [E], Option 1. Energy/water prices change | 125513 - 110238 |
| Net Present Value, NPV (E), Option 2. Energ//water prices change | 211478 |
| Cashflow(E) | $112700{ }^{\text {r }}$ |
| Cashflow (£) , Option 1. Energ//water prices change | 173432 -102546 |
| Cash flow (f), Option 2. Energ//water prices change | 288361 - ${ }^{\text {-68063 }}$ |

EFFECT4buildings

Adding HRU to a Small Concert Hall IV

$\stackrel{\Psi}{450} 000$	Cash flow 1		Cash flow, Both measures
300000		300000	
250000		250000 200000	\qquad
	-	$\begin{aligned} & 200000 \\ & 150000 \end{aligned}$	
200000			-
150000	-	100000	
100000		50000	
50000		-50000	024681012141618202224262830
		-150000	$----=\equiv=\equiv=$
-50000			Cashflow_1
-100 000	Year	- -	Cashflow_2
	shflow_1		Cashflow_1_Option 1. Energy/water prices change
	shflow_1_Option 1. Energy/water prices change		Cashflow_2 Option 1. Energy/water prices change Cashflow_1 Option 2. Energy/water prices change
	shflow_1 Option 2. Energy/water prices change		Cashflow_2 Option 2. Energy/water prices change

Adding HRU to a Small Concert Hall IV

Net Present value NPV 1

Better Windows to the Expansion Part

Better Windows to the Expansion Part

